Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Luminescence ; 39(4): e4736, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590043

RESUMO

In recent trends, radiation falls under the narrowband ultraviolet-B region (305-315 nm) widely used in phototherapy lamp applications in the treatment of skin diseases. In this paper, we report a Gd3+-doped NaYF4 luminescent material synthesized for the first time using the low-temperature co-precipitation method. It crystallized into a face-centred cubic structure, as confirmed by X-ray diffraction characterization techniques and Rietveld refinement. The photoluminescence property of the as-prepared sample shows a highly intense, sharp emission band obtained at 311 nm, which belongs to the narrowband ultraviolet-B region and corresponds to the transition of the 6P7/2→8S7/2 level of the Gd3+ ions under 272 nm excitation (8S7/2 to 6IJ). The transitions of the Gd3+ ions are detected entirely with different concentrations of Gd3+ ions. Scanning electron microscopy analysis indicated that the average particle was 288 nm. The critical distance for energy transfer was calculated to be equal to 11.5017 Å. Dipole-dipole interaction is responsible for energy transfer, as analyzed by Dexter theory. These excellent optical characteristics, together with their highly efficient and low-cost synthesis approach, indicate that synthesized NaYF4:Gd3+ phosphors have excessive potential for phototherapeutic lamp applications.


Assuntos
Luminescência , Fototerapia , Transferência de Energia , Difração de Raios X , Íons
2.
Luminescence ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037532

RESUMO

Light is the most important component in plant growth and development. This study synthesised a novel Mn4+ -doped K2 LiAlF6 red-emitting phosphor using the coprecipitation method. We observed that on addition of dopant Mn4+ ions to the host K2 LiAlF6 , its phase changed from rhombohedral to cubic due to the change in the lattice position of the atoms. When the atoms are excited at 468 nm, the K2 LiAlF6 :Mn4+ phosphor exhibited a red emission band ranging from 630 to 700 nm, centred at 638 nm, which matched well with the absorption spectra of phytochrome PR. The critical quenching content of Mn4+ ions was ~3 mol%. The critical distance between Mn4+ ions was determined to be 19.724 Å, and non-radiative energy transfer among the nearest-neighbour Mn4+ ions was the mechanism used for the concentration quenching effect. The Commission International de l'Eclairage (CIE) chromaticity coordinates of the K2 LiAlF6 :0.03 Mn4+ sample were (x = 0.7162, y = 0.2837). The luminescence mean decay time was calculated to be 8.29 ms. These results demonstrated the promising prospect of K2 LiAlF6 :Mn4+ as a red-emitting phosphor for application in red light-emitting diodes for plant cultivation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...